Contrôle d'algèbre # Calculatrice, téléphone et matériels de cours TD interdits 45 minutes Mercredi 19 octobre 2022 #### Exercice 1 : Question de cours (1 points) Soit l'application linéaire $f: E \to F$. Démontrer que Im f est un sev de F #### Exercice 2 : Système linéaire paramétré (6 points) Soit $m \in \mathbb{R}$ et le système paramétré suivant : $$\begin{cases} x + y - mz = 0 \\ x + my + z = 0 \\ mx + y + z = 0 \end{cases}$$ ff10,0) = 2 7 7 - a. Déterminez les valeurs critiques de m et identifiez les cas d'étude. - b. Sans calcul et en justifiant, déterminez la solution dans le cas unique si elle existe. - c. Résoudre le système pour les autres cas. Donnez une interprétation géométrique de vos résultats. ### Exercice 3: Application linéaire (10 points) Soit $f(x, y, z) = (2x + y - z_1x + 2y - z_1x + y)$. - a. Justifiez que f est une application linéaire. Donnez les espaces de départ et d'arrivée. - b. Quelle est la matrice représentative de f. \mathcal{M}_f dans la base \mathcal{B}^2 - c. Déterminez Ker f et sa base. Quelle est sa dimension? Donnez une interprétation géométrique. - d. Trouvez le rang de f par deux méthodes et exprimez une base de Im f. Donnez une interprétation géométrique de l'espace Im f. - e. f est-elle injective, surjective, bijective? - f. Diagonalisez \mathcal{M}_f et déterminez ses espaces propres. \mathcal{M}_f est-elle diagonalisable? Classez les valeurs propres par ordre décroissayd. Les vecteurs propres sont à déterminer tel que la première composante non-nulle soit 1_f Donnez une interprétation géométrique des espaces propres de - \mathcal{M}_f . Exprimer \mathcal{M}_f en fonction d'une matrice diagonale \mathcal{D} et d'une matrice de passage \mathcal{P} . Calculez l'inverse de \mathcal{P} . ## Exercice 4: Fonction de deux variables (3 points) Soit $$f(x,y) = \frac{ln(x^2 - 1)}{e^{-2xy}}$$. - a. Quel est le domaine de définition \mathcal{D}_f de f? Représenter \mathcal{D}_f graphiquement - b. Calculez le gradient de f.